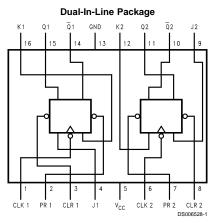
March 1998


FAIRCHILD

DM7476 Dual Master-Slave J-K Flip-Flops with Clear, Preset, and Complementary Outputs

General Description

This device contains two independent positive pulse triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flop after a complete clock pulse. While the clock is low the slave is isolated from the master. On the positive transition of the clock, the data from the J and K inputs is transferred to the master. While the clock is high the J and K inputs are disabled. On the negative transition of the clock, the data from the master is transferred to the slave. The logic state of J and K inputs must not be al-

Connection Diagram

Order Number 5476DMQB, 5476FMQB, DM5476J, DM5476W or DM7476N See Package Number J16A, N16E or W16A lowed to change while the clock is high. The data is transfered to the outputs on the falling edge of the clock pulse. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

 Alternate Military/Aerospace device (5476) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Function Table

Inputs					Outputs		
PR	CLR	CLK	J	к	Q	Q	
L	н	Х	Х	Х	н	L	
н	L	X	X	X	L	Н	
L	L	x	X	X	н	н	
					(Note 1)	(Note 1)	
н	н	л	L	L	Qo	\overline{Q}_{o}	
н	н	л	н	L	н	L	
н	н	л	L	н	L	н	
н	н	л	н	н	Toggle		

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

 r_L = Positive pulse data. The J and K inputs must be held constant while the clock is high. Data is transferred to the outputs on the falling edge of the clock pulse.

 \mathbf{Q}_0 = The output logic level before the indicated input conditions were established.

Toggle = Each output changes to the complement of its previous level on each complete active high level clock pulse.

Note 1: This configuration is nonstable; that is, it will not persist when the preset and/or clear inputs return to their inactive (high) level.

© 1998 Fairchild Semiconductor Corporation DS006528

Absolute	Maximum	Ratings (Note 2)
----------	---------	------------------

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	

DM54 and 54	–55°C to +125°C
DM74	0°C to +70°C
Storage Temperature Range	−65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter			DM5476		DM7476			Units
				Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage		2			2			V
V _{IL}	Low Level Input	Voltage			0.8			0.8	V
I _{OH}	High Level Outp	ut Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current				16			16	mA
f _{CLK}	Clock Frequency (Note 8)		0		15	0		15	MHz
tw	Pulse Width	Clock High	20			20			
	(Note 8)	Clock Low	47			47			ns
		Preset Low	25			25			
		Clear Low	25			25			
t _{su}	Input Setup Time (Notes 3, 8)		0↑			0↑			ns
t _H	Input Hold Time (Notes 3, 8)		0↓			0↓			ns
T _A	Free Air Operati	ng Temperature	-55		125	0		70	°C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Cond	Conditions		Typ (Note 4)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I =	= –12 mA			-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OF}	_i = Max	2.4	3.4		V
	Voltage	V _{IL} = Max, V _{IH}	= Min				
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL}	= Max		0.2	0.4	V
	Voltage	V _{IH} = Min, V _{IL}	= Max				
I _I	Input Current @ Max	$V_{\rm CC}$ = Max, $V_{\rm I}$ = 5.5V				1	mA
	Input Voltage						
I _{IH}	High Level Input	V _{CC} = Max	J, K			40	
	Current	V ₁ = 2.4V	Clock			80	μA
			Clear			80	
			Preset			80	1
I _{IL}	Low Level Input	V _{CC} = Max	J, K			-1.6	
	Current	$V_{I} = 0.4V$	Clock			-3.2	mA
		(Note 7)	Clear			-3.2	
			Preset			-3.2	
l _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-55	mA
	Output Current	(Note 5)	DM74	-18		-55	
I _{cc}	Supply Current	V _{CC} = Max (No	ote 6)		18	34	mA

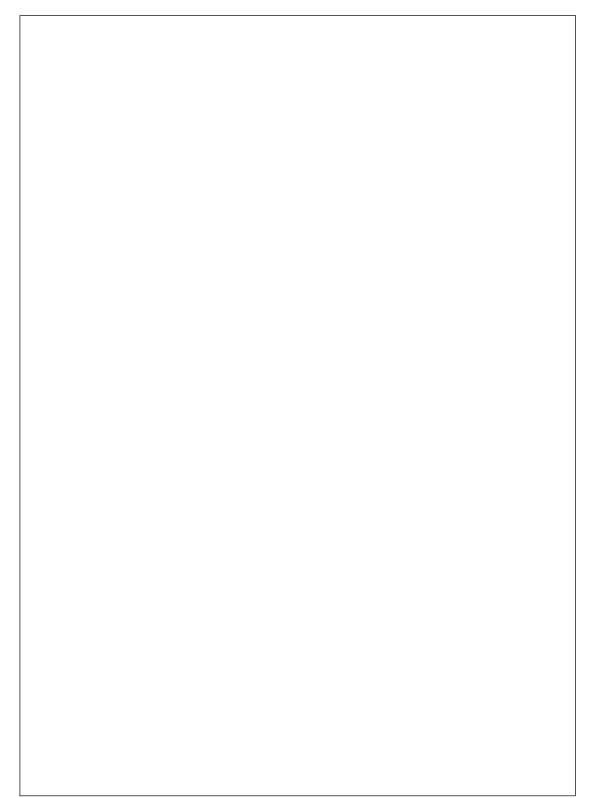
Note 3: The symbol (\uparrow, \downarrow) indicates the edge of the clock pulse is used for reference (\uparrow) for rising edge, (\downarrow) for falling edge.

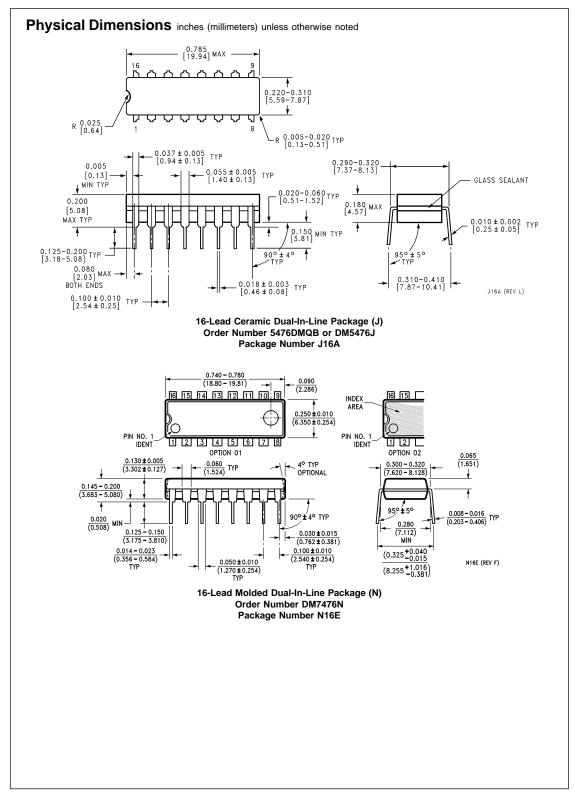
Note 4: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 5: Not more than one output should be shorted at a time.

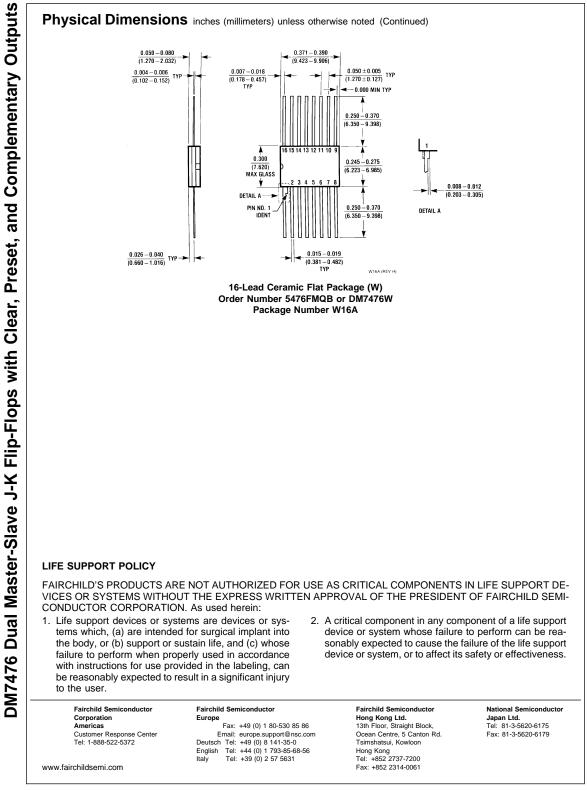
Note 6: With all outputs open, I_{CC} is measured with the Q and Q outputs high in turn. At the time of measurement the clock input is grounded.

Note 7: Clear is measured with preset high and preset is measured with clear high.


Electrical Characteristics (Continued)


Note 8: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Switching Characteristics at V_{CC} = 5V and T_A = 25°C


Symbol	Parameter	From (Input) To (Output)	R _L = - C _L = -	Units	
			Min	Max	1
f _{MAX}	Maximum Clock		15		MHz
	Frequency				
t _{PHL}	Propagation Delay Time	Preset		40	ns
	High to Low Level Output	to Q			
t _{PLH}	Propagation Delay Time	Preset		25	ns
	Low to High Level Output	to Q			
t _{PHL}	Propagation Delay Time	Clear		40	ns
	High to Low Level Output	to Q			
t _{PLH}	Propagation Delay Time	Clear		25	ns
	Low to High Level Output	to Q			
t _{PHL}	Propagation Delay Time	Clock to		40	ns
	High to Low Level Output	Q or \overline{Q}			
t _{PLH}	Propagation Delay Time	Clock to		25	ns
	Low to High Level Output	Q or \overline{Q}			

www.fairchildsemi.com

www.fairchildsemi.com

